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1.       Introduction   

 

We consider the initial boundary value problem of wave propagation in the half-

plane 0},<<{=2  yxR  filled with a homogeneous, isotropic, porous medium 

saturated with a fluid, i.e., a Biot medium, which is at rest for 0<t . It is assumed that 

the pores of the boundary 0=y  are open. In this medium, the wave field is formed at 

0=t  as the result of an external point action applied to the elastic phase (the skeleton of 

the medium), which is free of stresses and the pressure, of the boundary 0=y . This 

problem (non-stationary case) has been studied by L.A. Molotkov in (Molotkov, 2001), 

where the author has obtained formulas for components of displacement vectors in 

integral form. In (Gerasik & Stastna, 2008)  V. Gerasik and M. Stastna have obtained 

the solution of the problem in the stationary case in the form of integrals the 

asymptotics of which, similarly to (Molotkov, 2001), was found subsequently with the 

help of the saddle-point method. In the present paper, formulae for the components of 

displacement vectors are obtained in explicit form. This paper is an extended version of 

the paper (Zavorokhin, 2013), where the main results have been announced. We are 

making this version available in order to have more clear results and discussions in 

comparison to its short version. 

 

2.     Statement of the problem. Representation of the solution via quadratures 

 

The problem of finding perturbations in a Biot medium is reduced to the solution 

of wave equations (1) for potentials and to the determination of displacements and 

stresses by the following formulas (2), (3), and (4): 
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Here, ),,( tyxi  and kψ ),,(=),,( tyxtyx z  are scalar and vector potentials 

describing two longitudinal waves iP  and a transverse wave S , which propagate with 

velocities 1,2)=(0,>c=, 3 ionstvvi , respectively; ),(= yx uuu  is the displacement 

vector in the elastic phase and ),(=)(= yx wwuUw   is the displacement vector of 

fluid particles inside the pores relative to the skeleton; ijijij  =  is the stress tensor 

in the porous medium; ijij p = , where p  is the pressure in the fluid medium, ij  is 

the Kronecker symbol;   is the porosity, f  is the density of fluid, m  is a parameter 

with dimension of density,   is the mean density of the porous medium and 'L  is the 

shear modulus of the porous medium – they are positive constants; onstBB c=, 21  are 

coefficients dependent on the structure of the porous medium. 

Since the vector ψ  is not uniquely defined, we set the additional condition 

0=d ψiv . 

The wave field arisen must satisfy for 0=y  the boundary conditions  

0>c=0,=|0,=|),()(=| 0=0=0= onstAptxA yyxyyyy   
             

(5) 

and the zero initial data  
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21 tat

ttt

z
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The problem of finding perturbations in the Biot medium reduces to the solution 

of wave equations for potentials (1) and to determine the displacements and stresses 

according to formulas (2), (3), (4). With the help of the integral Fourier (with respect to 

the variable x ) and Laplace (with respect to the variable t ) transforms, the potentials as 

solutions of (1) can be represented by the formulas 
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where  
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For uniqueness of the radicals  ,i  on the plane   we draw cuts from the 

branch points 1,2,3)=(= jiv j  into the left half-plane parallel to the real axis and fix 

the principal sheet by the conditions  

 i =1,  =1   for  =0. (10) 

 In view of the choice of the principal sheet (10), for large   the following 

relations hold:  
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The functions ),(),,(),,( 21  kYkXkX  are determined from the boundary 

conditions (5), which are reduced to the system of equations 
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   is a parameter with dimension of velocity, 

and M  is the modulus of the porous medium. 

The solution of system (13) is represented by the relations  
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where  
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The equation )(0  =0 is the dispersion relation of surface Rayleigh waves for the 

free boundary of the porous Biot medium. 

Substituting formulas (14) in (7), (8), and using relations (2), (3), we obtain 

expressions for displacements in the elastic phase and for relative displacements in the 

fluid phase: 
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3. Derivation of exact formulas for the solution 

 

Our goal is to obtain the solution of the problem stated in explicit form. Following 

the method suggested by G.I. Petrashen in (Petrashen et al.,1950), we are able to 

integrate the expressions for displacements (16)-(19). This can be accomplished owing 

to the possibility of changing the order of integration with respect to   and k  in (16) – 

(19), which is analyzed in papers (Petrashen et al.,1950; Babich et al., 2002). 

For definiteness, we consider the horizontal component of the displacement in the 

elastic phase xu . Formulas for yxy wwu ,,  are obtained similarly: 
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Here, ,,
21

xpxp uu  and xsu  contain the factors 1,2)=(},{=,)( ie i

tyk   . It is 

obvious that when   0>R  tye  , one cannot change the order of integration in (20), 

because we arrive at exponentially divergent integrals. Consequently, to accomplish this 

change, the contour of integration ),(  ii   should be deformed in such a way 

that these expressions remain negative on it. Note that in xsxpxp uuu ,,
21

 the integrands 
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are regular for 0>R e , because the equation 0=)(0   does not have roots in the right 

half-plane on the principal sheet  . The only poles on the imaginary axis of the plane   

may be the poles Riv=  ( Rv  is the velocity of the Rayleigh wave) that coincide with 

the roots of the equation 0=)(0  . 

Under the conditions  
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the surface Rayleigh wave propagates along the free boundary 0=y  of the porous 

medium, but when  
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the Rayleigh wave is lacking (see Molotkov, L.A. (2001)).  

Proposition 1.  If 
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t , then 0=xsu .  

Physical interpretation: the waves travel with the velocities 1,2,3=, jv j , 

respectively, and do not reach the points with such y  coordinate for the time t. 
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 For large   the integrand in ( 21) has the form  
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 Deforming the contour of integration ),(  ii   into a semicircle adjacent 

to the imaginary axis  , we obtain that the integral with respect to   in (21) equals 

zero in virtue of Jordan’s lemma. Proof of the proposition (3.1)for xsxp uu ,
2

 is the same. 

Further, for 
1

>
v

y
t , using the formula
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, we split the integral in (21) 

into two parts. Let us consider one of them  
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 We study the behavior of the exponent on the imaginary axis   in the formula 

(23). We set  i=  and denote by  
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 We are interested in the behavior of the function )(  for 1v , specifically the 

roots of its derivative with respect to   
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under consideration, and hence there is a unique root, which we denote as st . Note that  
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 The latter means that st  is a minimum point of the function )( , and 

0=)(' st , where stst i = . 

We deform the contour into ( 23) so that 0<)(R e  is executed on it (see Fig. 1). 

Now changing the order of integration with respect to   and k  in the formula ( 23) is 

possible. Integrals over k  are easily calculated and we get  
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where  
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1 ytix    (27) 

and 
1C  is the contour shown in Fig. 1.  

We complete the contour 
1C  with a semicircle in the right half-plane, extended to the 

contour itself, and calculate the increment )(a rg  on this contour. It is easy to 

establish that somewhere inside the closed contour )(  has exactly one root:  
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Note also that if 0=)( 1

0

1  , then 0=)( 1

0

1  . 

Now we can use the residue theorem: 

  We have a closed contour. 

  The integral over the semicircle tends to zero as its radius tends to infinity. 

 



G. ZAVOROKHIN: ON A TWO-DIMENSIONAL LAMB’S PROBLEM IN CASE… 

 

 
45 

 

 
 

Figure  1. Integration contour 
1C . 

 

Thus, the desired integral in ( 26 ) is equal to i2  multiplied by the residue with 

the opposite sign (due to the orientation of the closed contour in the counterclockwise 

direction): 
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Further considerations will essentially depend on the sign of )( st . We see that 

the case of 0<)( st  corresponds to the situation when the wave 1P  has not yet 

reached the point ),( yx . If 0=)( st , then the point ),( yx  is located on the wave front 

1P . And in the case of 0>)( st  we are inside the wave front. 
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  The case 0>)( st . 

We set )(=)( stst i   . Then 1
  has no roots on the imaginary axis from st  to 

 , that is, the unique root inside the closed contour has a positive real part. Thus, the 

residue for this root is also not purely imaginary and in the sum with the complex 

conjugate value (the residue for 1
 ) will give horizontal component of the 

displacements of the longitudinal fast wave 1P : 
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  The case 0<)( st . 

Note that 0>)( st  as  , i. e. )(  has a root on the imaginary axis 

belonging to the interval ),( st . The root to the right of the contour is unique, hence  
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Such an equality is possible only for 22
1 < yxtv  , i. e. the front of the wave 1P  

(a semicircle centered at the origin and radius tv1 ) has not yet reached the point ),( yx . 

For a purely imaginary root 1

0 , the residues for 1
  are real and equal. Where does it 

follow that  

 0.=
1

xpu  

  The case 0=)( st . 

One can see that 1

0  is the root of the function )(  passes from the imaginary 

axis to the right half-plane when  
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 At this point, 1xpu  becomes nonzero. This case corresponds to the position of the 

point ),( yx  on the wave front of the wave 1P .  

The derivation of explicit expressions for the displacement components xsxp uu ,
2

 

for the slow longitudinal 2P  and the transverse S  waves is much the same as 
1

xpu . 

However, the difference from the case with the fast longitudinal wave 1P  is as follows: 

to change the order of integration with respect to   and k , the contour should be 

deformed by encircling the cuts beginning at the points 1,2,3=, jv j  and that the case 

0<)( st , in addition to the situation when the front of the volume wave has not yet 

reached the point ),( yx , corresponds to the head waves. Let the material parameters of 
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 We make the substitution 21 vv   in the formula (24). Let st  be the root of 

)('  . Now, following the derivations for 
1

xpu , we draw the integration contour, where 

0<)(R e . As follows from our considerations, sti  lies on the imaginary axis higher 

than 2iv , the point at which one of the cuts begins. As a consequence, sti  can be 

located between points 2iv  and 1iv . In this case, we draw the contour, encircling the 

corresponding cuts at the points 1iv  (see Fig. 2). Similarly to the expression (26), we 

get  

,
11)(

4

1
=

22
0

2
2

2
4

2'22



d

gvv

L
u

C
xp 

























                                

(32) 

where  

 ,= 2
2 ytix    (33) 

and 
2C  is the contour shown in Fig. 2.  

 
 

Figure  2. Integration contour 
2C ; the case of 2P  wave 

 

  Using the residue theorem, we arrive at  
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integration. Note that if 0=)( 2
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2  , then 0=)( 2
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2  . Further considerations again 

depend on the sign of )( st , but do not fully correspond to the case of the fast 

longitudinal wave 1P . We will see that the case 0<)( st , in addition to the situation 

when the slow longitudinal wave 2P  has not yet reached the point ),( yx , also 

corresponds to the head wave 21PP .  

  The case 0>)( st . 

Let )(=)( stst i   . Then 2
  has no roots on the imaginary axis from st  to  , 

i. e. the unique root inside the closed contour has a positive real part. Thus, the residue 

for this root is also not purely imaginary and in the sum with the complex conjugate 

value (the residue for 2
 ) will give horizontal component of the displacements of the 
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  The case 0=)( st . 

One can see that 2

0  is the root of the function )(  passes from the imaginary 

axis to the right half-plane when  
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point ),( yx  on the wave front of the wave 2P . 
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xpu . This situation corresponds to the case when the point 

),( yx  is inside the wave front of the head wave 21PP , but outside the wave front of the 

wave 2P .  
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 Carrying out analogous calculations for yxyxs wwuu ,,,  and, summing up the 

results obtained, we obtain the formulas  
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 Here,  
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 is the horizontal component of the displacements of the fast longitudinal wave 1P ,  
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is the horizontal component of the displacements of the slow longitudinal wave 2P ,  
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is the horizontal component of the displacements of the transverse wave S ,  
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is the vertical component of the displacements of the longitudinal fast wave 1P ,  
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 is the vertical component of the displacements of the longitudinal slow wave 2P ,  
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 is the vertical component of the displacements of the transverse wave S , where  
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The relative displacements in the fluid phase are expressed in terms of 

displacements in the elastic phase in accordance with the formulas  
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 From the exact solution (38) – (48) we can single out the expression that 

corresponds to the surface Rayleigh wave. In the first approximation as 0y , the 

components of the displacements of the Rayleigh wave have the form  
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  (52) 

where 1,2,3,4,=6,1,2,3,4,5,=,c=),(~),,( jionstvvcvvc RjlRjl  are parameters with 

dimension of velocity; R

xs

R

xp

R

xp uuu ,, 21  are the first, second, and third summands in (49), 

R

ys

R

yp

R

yp uuu ,, 21  are the first, second, and third summands in (50). 

Analyzing the solution of the problem obtained above, we have different analytic 

expressions in different domains. The passage from some expressions to others 

determines wave front sets, i.e., lines on which there are singularities. In the case of a 

point source that is situated on the boundary of the porous medium, in addition to the 

volume spherical waves SPP ,, 21  and to the surface Rayleigh wave, three head waves 

SPPP 121 , , and )>( 322 vvSP  or )>( 232 vvSP  propagate. The picture of wave front sets is 

given in Fig. 3. 

 
 

Figure  3. Wave front sets 

 

In conclusion, we note that another approach to this problem is possible on the 

base of papers (Smirnoff& Soboleff, 1932). One can show that the formulas obtained by 

the Petrashen’s method, coincide exactly with the formulas that are derived with the 

method of complex solutions (see (Petrashen et al., 1950; Smirnoff & Soboleff, 1932). 
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